A symmetric 1,3-dipolar cycloaddition of optically active trifluoromethylated α, β-unsaturated aryl sulfones with nitrones: the use of o-dialkylaminoethyl chiral auxiliaries

H iroyasu Tsuge, Takashi \mathbf{O} kano, Shoji E guchi*, and Hiroshi Kimoto ${ }^{\text {b }}$
${ }^{\text {a }}$ D epartment of M olecular D esign and Engineering, Graduate School of Engineering, N agoya U niversity, Furo-cho, Chikusa-ku, N agoya 464-01, J apan
${ }^{\mathrm{b}} \mathrm{N}$ ational Industrial R esearch Institute of N agoya, H irate-cho, Kita-ku, N agoya 462, J apan

Abstract

Optically active trifluoromethylated α, β-unsaturated aryl sulfones $8 \mathrm{a}-\mathrm{c}$, which have a chiral N, N-dialkylaminoethyl group on the ortho position, were synthesized from (\mathbf{S})-1-phenylethylamine 2 and ethyl trifluoroacetate. A symmetric 1,3-dipolar cycloaddition of sulfones $8 \mathrm{a}-\mathrm{c}$ with some selected nitrones 9a-c gave the corresponding isoxazolidines 10a-c, 11a-c and 12-15 regio- (> 98\%) and diastereo-selectively ($36-56 \% \mathrm{de}$) in $58-80 \%$ yields. The absolute configurations of the cycloadducts were assigned on the basis of X-ray crystallographic analysis of the adduct 10 and by the ${ }^{1} \mathrm{H}$ N M R spectra. The obtained facial selectivity was rationalized by comparison of four possible stable conformers of compound 8a based on AM 1 calculations.

Introduction

M uch attention has been addressed recently to trifluoromethylated heterocycles in view of their unique biological activities. ${ }^{1}$ In particular, trifluoromethylated five-membered heterocycles, isoxazolidines, are becoming important compounds because these compounds can be easily converted into some useful trifluoromethylated compounds. ${ }^{2}$ For the regio- and stereoselective synthesis of trifluoromethylated isoxazolidines, 1,3dipolar cycloaddition of trifluoromethylated electron-deficient olefins with nitrones is one of the most promising approaches. ${ }^{2 a-c}$ From this point of view, we recently reported highly regio- and stereo-selective synthesis of trifluoromethylated isoxazolidines by 1,3 -dipolar cycloaddition of 1,1,1-trifluoro-3-(phenylsulfonyl)propene 1 with various nitrones, and their conversion into trifluoromethylated syn-3-amino alcohols [equation (1)]. ${ }^{3}$ As a next stage, application of this

cycloaddition methodology to asymmetric reaction would be expected to provide a new approach for the synthesis of optically active trifluoromethylated isoxazolidine. Thus, in order to bring a chiral environment into the unsaturated aryl sulfone $\mathbf{1}$, we designed the introduction of a chiral substituent on the ortho position of the phenyl group. In this paper, we report the synthesis of optically active trifluoromethylated α, β-unsaturated aryl sulfones having a chiral dialkylaminoethyl substituent on the ortho position, and their 1,3-dipolar cycloaddition with some selected nitrones.

Results and discussion

For the preparation of unsaturated aryl sulfones with a chiral substituent on the ortho position, we started from (S)-1phenylethylamine $\mathbf{2}$ because introduction of the sulfur substituent was expected to be relatively easy by ortho-deprotonation
with alkyllithiums ${ }^{4}$ and both enantiomeric counterparts were commercially available. As a variety of the bulkiness of N, N-dialkylamino groups, three kinds of sulfones $8 \mathrm{a}-\mathrm{c}$ were synthesized as summarized in Scheme 1. M ethylation of the

Scheme 1 Reagents and conditions: i, $\mathrm{HCHO}, \mathrm{HCO}_{2} \mathrm{H}, 90^{\circ} \mathrm{C}, 24 \mathrm{~h}$ (3a); ii, 1,5-dibromopentane, DM PU, $100^{\circ} \mathrm{C}, 2 \mathrm{~h}$ (3b); iii, 2iodopropane, DMPU, $100^{\circ} \mathrm{C}, 2 \mathrm{~h}$; then $\mathrm{HCHO}, \mathrm{HCO}_{2} \mathrm{H}, 90^{\circ} \mathrm{C}, 4 \mathrm{~h}$ (3c); iv, BuLi, TM EDA , hexane, $-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$; then room temp., 3 days; v, $\mathrm{CH}_{3} \mathrm{SSCH}_{3}$, room temp., overnight; vi, BuLi, TMEDA, THF, $-40^{\circ} \mathrm{C}, 1 \mathrm{~h}$; then room temp., 1.5 h ; vii, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Et}$, room temp., overnight; viii, $\mathrm{NaBH}_{4}, \mathrm{MeOH}$, room temp., overnight; ix, $\mathrm{OXONE}^{\circledR}$, aq. M eOH , room temp, $4 \mathrm{~h} ; \mathrm{x}, \mathrm{M} \mathrm{sCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$
primary amine $\mathbf{2}$ with formaldehyde and formic acid according to Pine's procedure ${ }^{5}$ gave amine 3 a in 84% yield. The piperidine $\mathbf{3 b}$ was obtained from amine $\mathbf{2}$ with 1,5-dibromopentane in the presence of solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in N, N '-dimethylpropyleneurea (D M PU) at $100^{\circ} \mathrm{C}$ in 94% yield. I sopropylmethylamino derivative 3 c was prepared in 88% yield by two-step alkylations: isopropylation of compound $\mathbf{2}$ with 2-iodopropane in DM PU ${ }^{6}$ followed by methylation with formaldehyde and formic acid. ${ }^{5}$ The ortho-thiomethylations of amines 3a-c were performed by deprotonation with BuLi-tetramethylethylenediamine

Table 1 1,3-Dipolar cycloaddition of substrates 8a-c with nitrones 9a-c

8a-c	$\begin{aligned} & \mathrm{R}^{3}=+\mathrm{N}^{-} \mathrm{N}^{-} \\ & \mathrm{R}^{4} \end{aligned}$	$\xrightarrow[90^{\circ} \mathrm{C}]{\text { Toluene }}$			 14	 11, 13 and	
Olefins	N itrones	$\mathrm{R}^{1} \mathrm{R}^{2}$	R^{3}	R^{4}	Y ield (\%)	Products	de ${ }^{\text {a }}$
8 a	9a	Me Me	Ph	Me	80	10a, 11a	56
8a	9b	Me Me	Ph	Ph		10b, 11b	54
8a	9c	Me Me	Ph	Bu	71	10c, 11c	41
8b	9a	$-\left[\mathrm{CH}_{2}\right]_{5}-$	Ph	Me	74	12, 13	36
8c	9a	Me Pri	Ph	Me	58	14, 15	40

${ }^{\text {a }}$ D etermined by the ${ }^{1} H N M R$ spectra.
(TM EDA) at $-78^{\circ} \mathrm{C}$ to room temperature followed by addition of dimethyl disulfide to give sulfides $\mathbf{4 a} \mathbf{- c}$. Since attempted trifluoroacetylation after oxidation of sulfide into sulfone failed, the sulfides 4a-c were firstly trifluoroacetylated by deprotonation of the S-methyl group with BuLi-TM EDA at $-78^{\circ} \mathrm{C}$ to room temperature followed by addition of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Et}$ to give mixtures of the corresponding ketones $5 \mathbf{a}-\mathbf{c}$ with their hydrate forms. A fter reduction (NaBH_{4}) of ketones $5 \mathrm{a}-\mathrm{c}$ to the alcohols $6 \mathrm{a}-\mathbf{c}$, oxidation of the sulfides with $\mathrm{OXONE}{ }^{\circledR 7}$ led to the corresponding sulfones 7a-c. Finally, the alcohols 7a-c were dehydrated with methanesulfonyl chloride and an excess of triethylamine to obtain the desired olefins $\mathbf{8 a - c}$ as E olefins in 18, 3 and 7\% overall yield based on the amines $3 \mathrm{a}-\mathrm{c}$, respectively. The given structures for products 8a-c were supported by analytical and spectral data.

The 1,3-dipolar cycloaddition of $8 \mathbf{a}$ with nitrones $9 \mathrm{a}-\mathbf{c}$, and that of compounds $\mathbf{8 b}$ and $\mathbf{8 c}$ with nitrone 9 a in toluene at $90^{\circ} \mathrm{C}$ for 12 h occurred regio- ($>98 \%$) and diastereo-selectively (36-56\% de) to afford the corresponding isoxazolidines 10a-c, 12 and 14 respectively as the major products, and isoxazolidines 11a-c, 13 and 15 respectively as minor products as summarized in Table 1. No regioisomers were detected by the ${ }^{1} \mathrm{H}$ NMR spectra of the crude products. The adducts 10a-c and 11a-c were separated after sequential silica gel chromatography. However, other adducts 12 (13) and 14 (15) were inseparable, and hence the product ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. In all examined cycloadditions, similar yields (58$80 \%$) and similar diastereoselectivities (36-56\% de) were obtained. This means that the reactivity of olefins $\mathbf{8 a}-\mathbf{c}$ and the selectivity in their cycloaddition would not be much affected by either the kind of nitrone used or the bulkiness of the alkylamino group on the chiral moiety. In agreement with our previous results for the non-asymmetric 1,3-dipolar cycloaddition of the sulfone $1,{ }^{3} \mathrm{H} N \mathrm{~N} R$ spectra revealed that all major and minor adducts had the same relative configurations (i.e., 3,4trans and 4,5-trans) in the isoxazolidine ring. For example, two coupling constants $J_{3,4}(8.2 \mathrm{~Hz})$ and $J_{4,5}(3.6 \mathrm{~Hz})$ of compound 10a are typical values for the given relative configuration and the J-values of other adducts are similar, as listed in Tables 2 and 3.

Recrystallization of the cycloadduct 10a from diethyl ether produced crystals. A single-crystal X-ray diffraction study afforded the structure depicted in Fig. 1. The determination of the stereochemistry of $\mathrm{C}-1,-2$ and -3 was based on the known (S) configuration (C-18) of the N, N-dimethylaminoethyl group. The absolute configuration of the isoxazolidine moiety was thus established as $3 S, 4 \mathrm{~S}, 5 \mathrm{R}$. Therefore, as discussed above, the absolute configuration of the isoxazolidine moiety of the minor adduct 11a can be determined as the chiral counterpart (i.e., 3R , 4R , 5S) of major adduct 10a. The absolute configurations of other adducts were deduced based on chemical-shift

Table 2 Chemical shifts ($\mathrm{H}^{3}, \mathrm{H}^{4}$ and H^{5}) and vicinal coupling constants ($\mathrm{J}_{3,4}, \mathrm{~J}_{4,5}$)/Hz of major adducts 10a-c, 12 and 14 in the ${ }^{1} \mathrm{H}$ N M R spectra

10a-c, 12 and 14

	H^{3}		H^{4}		H^{5}
10a	$\delta 4.26$		$\delta 5.43$		$\delta 4.56$
10b	$\int_{3,4}{ }_{4.72}$	8.2	J 4.5 S5.65	3.6	$\delta 4.26$
	$J_{3,4}$	7.1		3.5	
10c	$\delta 4.34$		$\delta 5.36$		$\delta 4.55$
12	$\begin{aligned} & J^{3,4} \\ & \delta 4.25 \end{aligned}$	7.9	$\begin{aligned} & \mathrm{J}_{4,5} \\ & \delta 4.73 \end{aligned}$	3.4	$\delta 4.68$
14	$\begin{aligned} & J_{3,4} 4.18 \end{aligned}$	7.9	$\begin{aligned} & \mathrm{J}_{4,5} \\ & \delta 4.43 \end{aligned}$	3.8	$\delta 4.74$
	$\mathrm{J}_{3,4}$	8.1	$\mathrm{J}_{4,5}$	3.6	

Table 3 Chemical shifts $\left(\mathrm{H}^{3}, \mathrm{H}^{4}\right.$ and $\left.\mathrm{H}^{5}\right)$ and vicinal coupling constants $\left(J_{3,4}, J_{4,5}\right) / \mathrm{Hz}$ of minor adducts 11a-c, 13 and 15 in the ${ }^{1} \mathrm{H}$ N M R spectra

similarity in the ${ }^{1} \mathrm{H}$ NMR spectra; i.e., as $3 S, 4 \mathrm{~S}, 5 \mathrm{R}$ for the major adducts 10b, 10c, $\mathbf{1 2}$ and $\mathbf{1 4}$ and as $3 R, 4 R, 5 S$ for the minor adducts 11b, 11c, 13 and 15 (Tables 2 and 3). \dagger

The X-ray crystallographic analysis of compound 10a provided some important indications concerning the stable conformation of this substituted aryl sulfone. (1) The $N, N-$ dimethylamino group at the ortho position is perpendicular to the phenylene plane. (2) The p-orbitals of the phenyl group are nearly parallel with the centre axis of the SO_{2} group. (3) The N, N-dimethylamino group and the oxygen atoms of the SO_{2} group are located on the opposite side of the phenylene plane.

[^0]

Fig. 1 ORTEP drawing of the molecular structure of compound 10a

rel. $H_{\mathrm{f}}=0.00 \mathrm{kcal} \mathrm{mol}^{-1 a}$

rel. $H_{f}=0.37 \mathrm{kcal} \mathrm{mol}^{-1}$

rel. $H_{f}=2.55 \mathrm{kcal} \mathrm{mol}^{-1}$

rel. $H_{f}=2.76 \mathrm{kcal} \mathrm{mol}^{-1}$

Fig. 2 Schematic N ewman projection for the four possible stable conformers of compound $\mathbf{8 a}$ and the relative heats of formation calculated by the A M 1 method. ${ }^{\text {a }} 1 \mathrm{cal}=4.184 \mathrm{~J}$.

These conformational features would be considered to be unchanged between the olefin and its cycloadduct because the rotations of the dimethylaminoethyl group or the SO_{2} group against the phenyl group would be relatively difficult. These unique features of this substituted aryl sulfone can be applicable to the ground-state conformation of unsaturated aryl sulfone $8 \mathbf{a}$. The p-orbitals of the olefin moiety in $\mathbf{8 a}$ would also be parallel with the centre axis of the SO_{2} group in the same manner as were those in the phenyl group. Therefore, four possible stable conformers I-IV of compound 8a can be listed as depicted schematically by N ewman projection in Fig. 2. For the structural optimizations and energy calculations of these four conformers I-IV, semi-empirical MO calculations were performed using the AM 1 method. \ddagger^{88} Conformers II and IV are $\sim 2.6 \mathrm{kcal} \mathrm{mol}^{-1} \S$ less stable than conformers I and III [cf. conformational feature (3)]. In the more stable conformers I and III, III is slightly less stable ($0.37 \mathrm{kcal} \mathrm{mol}^{-1}$) than I because of the steric repulsion between the trifluoropropenyl and dimethylamino groups. Because 1,3-dipolar cycloaddition in which the $C=C$ double bond of the dipolarophile is transformed into two σ-bonds is an exothermic reaction, the transition state should be reactant-like (Hammond's postulate). ${ }^{9}$ Thus, the facial selectivity in the cycloaddition of compound $\mathbf{8 a}$ should be

[^1]

Fig. 3 Transition structures of 1,3-dipolar cycloaddition of substrates 8a-c with nitrones 9a-c
dependent on the relative stability between conformers I and III. When the dimethylamino group was replaced by a piperidyl (8b) or an isopropyl(methyl)amino group (8c), only scanty change in the facial selectivity was observed (Table 1). Therefore, appreciable steric repulsion between the trifluoropropenyl and dialkylamino groups could not be added to make conformer III more unstable. From these considerations, cycloadditions of $8 \mathrm{a}-\mathrm{c}$ with nitrones $9 \mathrm{a}-\mathrm{c}$ could be explained to occur mainly on the si-re face of the most stable conformer 1 via a Z -endo transition state ${ }^{3}$ to afford the major adducts 10a-c, 12 and 14 with a $3 S, 4 S, 5 R$ configuration as illustrated in Fig. 3. On the other hand, the cycloaddition could also proceed on the re-si face of the conformer III via a Z-endo transition state to give the minor adducts 11a-c, 13 and 15 with $3 R, 4 R, 5 S$ configuration.

In conclusion, asymmetric 1,3-dipolar cycloaddition of compounds $8 \mathrm{a}-\mathrm{c}$ with nitrones $9 \mathrm{a}-\mathrm{c}$ gave the corresponding isoxazolidines 10a-c, 11a-c and $12-15$ regio- ($>98 \%$) and diastereo-selectively ($36-56 \%$ de) in $58-80 \%$ yield. Synthetic application of these adducts and improvement of the diastereoselectivity of this cycloaddition are being studied in our laboratory.

Experimental

M ps were determined by a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO FT/IR 5300 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained with a Varian GEM INI-200 spectrometer at 200 and at 50 MHz , respectively, for samples in CDCl_{3} solution with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. ${ }^{19} \mathrm{~F} \mathrm{NMR}$ spectra were obtained with a Hitachi FT-NMR R-90F spectrometer at 85 M Hz for samples in CDCl_{3} solutions with CFCl_{3} as an internal standard. J -Values are given in Hz . M ass spectra were recorded on aJEOL JM S-AX 505 HA mass spectrometer at 70 eV . Flash chromatography was performed with a silica gel column (F ujiDavison BW-300). Optical rotations were measured on a ATAGO POLAX-D polarimeter, and [$a]_{\mathrm{D}}$-values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. A nalytical TLC was performed on M erck K ieselgel $60 \mathrm{~F}_{254}$. M icroanalyses were performed with a Perkin-Elmer 2400S CH N elemental analyser.

(1S)-N , N-D imethyl-1-phenylethylamine 3a

To (S)-1-phenylethylamine 2 ($12.8 \mathrm{~cm}^{3}, 100 \mathrm{mmol}$) were added formic acid ($14.3 \mathrm{~g}, 350 \mathrm{mmol}$) and 35% aq. formaldehyde (21.5 $\mathrm{g}, 250 \mathrm{mmol})$. A fter being heated for 24 h at $90^{\circ} \mathrm{C}$, the solution was cooled and 6 M aq. $\mathrm{HCl}\left(35 \mathrm{~cm}^{3}\right)$ was added. The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3} \times 3\right)$. The aqueous layer was made basic with 50% aq. NaOH and was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3} \times 3\right)$. The combined extracts were dried ($\mathrm{M} \mathrm{gSO}_{4}$) and the solvent was removed under reduced pressure. The residue was purified by K ugel rohr distillation to give title compound 3 a ($12.6 \mathrm{~g}, 84 \%$) as a yellow oil; $[a]_{\mathrm{D}}^{27}-47.8$ (c 1.2, $\mathrm{MeOH})\left\{\right.$ lit, ${ }^{10}[a]_{\mathrm{D}}{ }^{20}-49.2$ (c 1.0, MeOH)\}.

(1'S)-1-(1-P henylethyl)piperidine 3b

To a solution of (S)-1-phenylethylamine $2\left(10.3 \mathrm{~cm}^{3}, 80.0\right.$ mmol) and powdered solid $\mathrm{Na}_{2} \mathrm{CO}_{3}(33.9 \mathrm{~g}, 320 \mathrm{mmol})$ in DM PU ($50 \mathrm{~cm}^{3}$) was added 1,5-dibromopentane ($13.0 \mathrm{~cm}^{3}$, 96.0 mmol). A fter being stirred for 2 h at $100^{\circ} \mathrm{C}$, the resulting solution was poured into water ($400 \mathrm{~cm}^{3}$) and was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(80 \mathrm{~cm}^{3} \times 4\right)$. The combined extracts were washed with water ($50 \mathrm{~cm}^{3} \times 3$). The organic layer was dried ($\mathrm{M} \mathrm{gSO}_{4}$) and the solvent was removed under reduced pressure. The residue was purified by Kugelrohr distillation to give title compound 3b ($14.2 \mathrm{~g}, 94 \%$) as a yellow oil; $\mathrm{R}_{\mathrm{f}} 0.37$ ($1: 1$ hexane-EtOAc) (Found: C, 82.4; H, 10.2; N, 7.5. C ${ }_{13} \mathrm{H}_{19} \mathrm{~N}$ requires $\mathrm{C}, 82.48 ; \mathrm{H}, 10.12 ; \mathrm{N}, 7.40 \%$); $[a]_{0}^{27}-18.0$ (с 1.1 CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1117, 1451 and 2934; δ_{H} 1.34-1.44 (2 $\mathrm{H}, \mathrm{m}), 1.37$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8$), 1.49-1.60 ($4 \mathrm{H}, \mathrm{m}$), 2.23-2.46 (4 H , m), 3.39 ($1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.81$) and 7.19-7.33 ($5 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}} 19.5,24.7$, 26.4, 51.7, 65.4, 127.0, 128.7, 128.4 and 144.4; m/z (EI) 189 $\left(\mathrm{M}^{+}, 23 \%\right), 174$ (100) and 112 (47).

(1S)-N -I sopropyl-N -methyl-1-phenylethylamine 3c

To a solution of N -isopropyl-1-phenylethylamine ${ }^{6}$ (15.2g, 93 mmol) were added formic acid ($28.5 \mathrm{~g}, 558 \mathrm{mmol}$) and 35% aq. formaldehyde ($20.0 \mathrm{~g}, 233 \mathrm{mmol}$). A fter being heated for 4 h at $110^{\circ} \mathrm{C}$, the solution was cooled and 6 M aq. $\mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$ was added. The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (40 $\mathrm{cm}^{3} \times 3$). The aqueous layer was made basic with 50% aq. NaOH and was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(40 \mathrm{~cm}^{3} \times 4\right)$. The combined extracts were dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and the solvent was removed under reduced pressure. The residue was purified by Kugel rohr distillation to give 3c (15.6 g , 95\%, 88\% overall yield from substrate 2) as an orange oil: $\mathrm{R}_{\mathrm{f}} 0.47$ (EtOA c) (Found: C, 81.1; H, 10.7; N, 7.8. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}$ requires $\mathrm{C}, 81.30 ; \mathrm{H}, 10.80 ; \mathrm{N}, 7.90 \%$); $[a]_{D}^{27}-37.7$ (c 1.1, CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1078,1364$ and 1451; $\delta_{\mathrm{H}} 0.93$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6$), 0.97 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8$), 1.32 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6.8), $2.13(3 \mathrm{H}, \mathrm{s}), 2.95(1 \mathrm{H}$, sep, J 6.6), $3.60(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.6)$ and 7.16-7.38 ($5 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}} 16.5,19.1,21.4,31.1,49.1,61.8,126.9$, 127.6, 128.6 and $146.8 ; \mathrm{m} / \mathrm{z}(E \mathrm{I}) 177\left(\mathrm{M}^{+}, 73 \%\right), 162$ (100) and 105 (99).

1-[(1S)-1-(N ,N-D imethylamino)ethyl]-2-(3,3,3-trifluoroprop-1enylsulfonyl)benzene 8a

To a solution of compound $3 \mathrm{a}(5.97 \mathrm{~g}, 40 \mathrm{mmol})$ and TM EDA ($18.1 \mathrm{~cm}^{3}, 120 \mathrm{mmol}$) in dry hexane ($40 \mathrm{~cm}^{3}$) was added a 1.6 M solution of BuLi in hexane ($74 \mathrm{~cm}^{3} ; 120 \mathrm{mmol}$) under nitrogen at $-78^{\circ} \mathrm{C}$ during 20 min . A fter stirring of the mixture for 0.5 h at $-78^{\circ} \mathrm{C}$ and for an additional 3 days at room temperature, dimethyl disulfide ($18.0 \mathrm{~cm}^{3}, 200 \mathrm{mmol}$) was added to the resulting solution at $0^{\circ} \mathrm{C}$ in 15 min . The solution was stirred overnight at room temperature and was then poured into 6 M aq $\mathrm{HCl}\left(150 \mathrm{~cm}^{3}\right)$. The organic layer was washed with 6 M aq. HCl ($40 \mathrm{~cm}^{3} \times 3$). The combined aqueous layer was made basic with 50% aq. NaOH and was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3} \times 4\right)$. The combined extracts were dried $\left(\mathrm{M} \mathrm{GSO}_{4}\right)$ and the solvent was removed under reduced pressure to give compound 4 a [8.94 g; $R_{f} 0.41$ (EtOA c)]. Without purification, to a solution of compound $4 \mathrm{a} \times 8.94 \mathrm{~g}$) and TMEDA ($8.50 \mathrm{~cm}^{3}, 55.4 \mathrm{mmol}$) in dry THF ($25 \mathrm{~cm}^{3}$) was added a 1.6 M solution of BuLi in hexane ($35.0 \mathrm{~cm}^{3}, 55.4 \mathrm{mmol}$) under nitrogen at $-78^{\circ} \mathrm{C}$ during 0.5 h . A fter the mixture had been stirred for 1 h at $-40^{\circ} \mathrm{C}$ and for an additional 1.5 h at room temperature, ethyl trifluoroacetate ($7.08 \mathrm{~cm}^{3}, 55.4 \mathrm{mmol}$) was added to the resulting solution at $-60^{\circ} \mathrm{C}$ during 10 min . A fter being stirred overnight at room temperature, the resulting solution was poured into saturated aq. $\mathrm{NaCl}\left(100 \mathrm{~cm}^{3}\right)$ and was extracted with $\mathrm{EtOA} \mathrm{C}\left(40 \mathrm{~cm}^{3} \times 4\right)$. The combined extracts were dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and the solvent was removed under reduced pressure to give title compound $\mathbf{5 a}$ [15.0 g ; $\mathrm{R}_{\mathrm{f}} 0.34$ (EtOA C); $v_{\text {max }} 1667$ and $3447 \mathrm{~cm}^{-1}$].
Without purification, to a solution of compound $\mathbf{5 a}(15.0 \mathrm{~g}$) in $\mathrm{MeOH}\left(25 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(0.95 \mathrm{~g}, 25.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. A fter being stirred overnight at room temperature, the
resulting solution was poured into saturated aq. NaCl solution ($75 \mathrm{~cm}^{3}$) and was extracted with EtOA C ($30 \mathrm{~cm}^{3} \times 3$). The combined extracts weredried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and the solvent was removed under reduced pressure. The residue was chromatographed on a silica gel column (AcOEt) to give a 50:50 diastereomeric mixture of compound 6 a ($4.17 \mathrm{~g}, 29 \%$ overall yield from 3a) as an orange oil; $\mathrm{R}_{\mathrm{f}} 0.41$ (EtOAc) (Found: C, 53.4; H, 6.3; N, 4.4. $\mathrm{C}_{13} \mathrm{H}_{18}{ }^{\mathrm{F}}{ }_{3} \mathrm{~N}$ OS requires $\mathrm{C}, 53.23 ; \mathrm{H}, 6.18 ; \mathrm{N}, 4.77 \%$); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 1127,1163,3061 ; \delta_{\mathrm{H}} 1.31$ ($1.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0$), $1.35(1.5 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.0), $2.26(3 \mathrm{H}, \mathrm{s}), 2.29(3 \mathrm{H}, \mathrm{s}), 2.86(0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.7$ and 10.8), 2.97 ($0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.2$ and 10.8), 3.26 ($0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.2$ and 2.0), 3.33 ($0.5 \mathrm{H}, \mathrm{dd}$, J 13.7 and 2.0), 3.21-3.38 ($1 \mathrm{H}, \mathrm{m}$), 4.08 ($1.0 \mathrm{H}, \mathrm{dqd}, \mathrm{J} 10.8,6.8$ and 2.0), 4.67 ($0.5 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0$), 4.69 ($0.5 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0$) and 7.21-7.67 (4 H, m); $\delta_{\mathrm{c}} 7.7,9.1,37.9,39.3$, 39.8, 40.1, 58.4, 59.7, 66.7 ($q, J 30$), 73.1 ($q, J 30$), 119.2 (q, J 281), 125.6 (q, J 281), 127.6, 127.8, 128.3, 128.4, 129.1, 129.2, 133.8, 135.7, 136.6, 135.7, 136.6, 136.9, 143.9 and 145.2; δ_{F} -78.4 (d, J 7), -79.3 (d, J 7); m/z (EI) 293 (${ }^{+}$, 73%), 278 (10) and 135 (76).
To a solution of compound $\mathbf{6 a}(3.32 \mathrm{~g}, 11.3 \mathrm{mmol})$ in M eOH $\left(22 \mathrm{~cm}^{3}\right)$ was added OXONE ${ }^{\circledR}(15.3 \mathrm{~g}, 24.9 \mathrm{mmol})$ in water (27 cm^{3}) at $0^{\circ} \mathrm{C}$. A fter being stirred for 4 h at room temperature, saturated aq. NaHSO_{3} solution was added until no change of colour in K I starch paper was observed. The solution was made neutral with 50% aq. NaOH and the solvent was removed under reduced pressure The resulting solid was removed by filtration and washed with $\mathrm{CHCl}_{3}\left(40 \mathrm{~cm}^{3} \times 5\right)$. The aqueous layer was extracted with $\mathrm{CHCl}_{3}\left(15 \mathrm{~cm}^{3} \times 3\right)$. The combined washings and extracts were dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and the solvent was removed under reduced pressure to give title compound 7a [3.69 $\mathrm{g} ; \mathrm{R}_{\mathrm{f}} 0.35$ (EtOA C); $v_{\text {max }} 1273$ and $1310 \mathrm{~cm}^{-1}$].

Without purification, to a solution of compound $7 \mathrm{7a}(3.69 \mathrm{~g})$ and triethylamine $\left(4.80 \mathrm{~cm}^{3}, 3.40 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(17 \mathrm{~cm}^{3}\right)$ was added methanesulfonyl chloride ($1.30 \mathrm{~cm}^{3}, 17.0 \mathrm{mmol}$) under nitrogen at $0^{\circ} \mathrm{C}$ during 10 min . A fter being stirred for 0.5 h at $0^{\circ} \mathrm{C}$, the solution was poured into saturated aq. $\mathrm{NaHCO}_{3}(50$ cm^{3}) and was extracted with $\mathrm{CHCl}_{3}\left(20 \mathrm{~cm}^{3} \times 3\right)$. The organic layer was dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and the solvent was removed under reduced pressure. The residue was chromatographed on a silica gel column (AcOEt) to give title compound 8 a ($2.23 \mathrm{~g}, 51 \%$ yield from 6a; 18% overall yield from 3a) as an orange oil; R_{f} 0.37 (1:1 hexane-EtOAc) (Found: C, 50.6; H, 5.5; N, 4.5. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}$ requires $\left.\mathrm{C}, 50.81 ; \mathrm{H}, 5.25 ; \mathrm{N}, 4.56 \%\right) ;[a]_{D}^{25}$ -67.6 (c 1.8, CHCl_{3}); $v_{\text {max }}$ (neat)/cm ${ }^{-1} 1154$, 1298 and 1443; δ_{H} 8.15-7.44 ($4 \mathrm{H}, \mathrm{m}$), $7.38(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 15.4$ and 1.8), $6.73(1 \mathrm{H}, \mathrm{dq}$, J 15.4 and 6.2), $4.43(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.6), 2.15(6 \mathrm{H}, \mathrm{s})$ and $1.33(3 \mathrm{H}$, d, J 6.6); $\delta_{c} 14.8,41.5,58.6,122.0(q, J 271), 126.7$ (q, J 36), 128.2, 129.1, 131.1, 135.0, 136.7, 141.8 (q, J 6) and 146.8; δ_{F} $-65.1(\mathrm{~d}, \mathrm{~J} 6) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 307\left(\mathrm{M}^{+}, 13\right)$ and 292 (100).

1-[(1S)-1-(1-P iperidyl)ethyl]-2-(3,3,3-trifluoro-1-propenylsulfonyl)benzene 8 b

This was obtained similarly from compound $\mathbf{3 b}$ (7.57 g , 40 mmol) after chromatography on a silica gel column ($3: 1$ hexane-A COEt) as an orange oil ($416 \mathrm{mg}, 3 \%$ overall yield from 3b): $R_{f} 0.43$ (3:1 hexane-EtOA c) (Found: C, 55.3; H, 6.0; N, 3.9. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 55.32 ; \mathrm{H}, 5.80 ; \mathrm{N}, 4.03 \%$); $[a]_{D}^{27}$ -70.0 (c 2.0, CHCl_{3}); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 1155,1298$ and 2938; δ_{H} $1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6), 1.62-1.36(6 \mathrm{H}, \mathrm{m}), 2.52-2.34(4 \mathrm{H}, \mathrm{m}), 4.58$ ($1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.6$), $6.83(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 15.4$ and 6.2), $7.89(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}$ 15.4 and 1.8) and $8.10-7.41(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 15.4,24.6,26.1,50.7$, 58.4, 121.9 (q, J 271), 128.1, 128.2 (q, J 36), 129.7, 130.9, 134.9, 136.4 and $141.6(\mathrm{q}, \mathrm{J} 6)$ and $146.8 ; \delta_{\mathrm{F}}-65.2(\mathrm{~d}, \mathrm{~J} 5) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ 347 ($\mathrm{M}^{+}, 19 \%$), 346 (14) and 186 (100).

1-[(1S)-1-(N-Isopropyl-N -methylaminoethyl]-2-(3,3,3-tri-fluoroprop-1-enylsulfonyl)benzene 8c

This was obtained similarly from compound $\mathbf{3 c}(8.86 \mathrm{~g}, 50$ mmol) after chromatography on a silica gel column ($1: 1$ hexaneAcOEt) as an orange oil ($1.18 \mathrm{~g}, 7 \%$ overall yield from 3 c): R_{f}
0.48 (1:1 hexane-EtOAc) (Found: C, 53.8; H, 6.1; N, 4.0. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N} \mathrm{O}_{2} \mathrm{~S}$ requires C , 53.72; $\mathrm{H}, 6.01 ; \mathrm{N}, 4.18 \%$); $[a]_{0}^{24}$ -40.2 (c 1.7, CHCl_{3}); $v_{\text {max }}$ (neat)/cm ${ }^{-1} 1154,1298$ and $1368 ; \delta_{\mathrm{H}}$ 0.99 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6$), $1.01(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6), 1.30(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5), 2.05$ ($3 \mathrm{H}, \mathrm{s}$), $2.94(1 \mathrm{H}$, septet, J 6.6), $4.53(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.5$), $6.85(1 \mathrm{H}$, dq, J 15.4 and 6.2), $7.39(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 15.4$ and 1.6) and $8.08-7.40$ $(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 17.7,18.3,20.3,31.4,49.2,56.4,121.8$ (q, J 271), 127.8, 128.8 ($q, J 37$), 129.9, 135.3, 135.8, 140.8 (q, j 6) and 148.9; $\delta_{\mathrm{F}}-65.4(\mathrm{~d}, \mathrm{~J} 5) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 336\left(\mathrm{M}^{+}, 2 \%\right), 320$ (13) and 174 (100).

G eneral procedure for 1,3-dipolar cycloaddition of amines 8a-c

 with nitrones 9a-cA solution of compound $8 \mathrm{a}-\mathrm{c}$ (1.00 mmol) and a nitrone 9a-c (1.00 mmol) in toluene ($5 \mathrm{~cm}^{3}$) was heated at $90^{\circ} \mathrm{C}$ under argon in a sealed tube for 12 h . A fter the solvent was removed under reduced pressure, the residue was chromatographed on a silica gel column ($2: 1$ hexane-AcOEt). No regioisomers of the cycloadducts were detected by ${ }^{1} \mathrm{H}$ N M R spectroscopy of the crude products. For the yields and devalues, see Table 1.

($3 \mathrm{~S}, 4 \mathrm{~S}, 5 \mathrm{R}$)-4-\{2-[(1S)-1-(D imethylamino)ethyl]phenyl-

 sulfonyl\}-2-methyl-3-phenyl-5-(trifluoromethyl)isoxazolidine 10a and (3R,4R,5S)-4-\{2-[(1S)-1-(dimethylamino)ethyl]-phenyl-sulfonyl\}-2-methyl-3-phenyl-5-(trifluoromethyl)isoxazolidine11a. A mixture of heterocycles 10a and 11a was obtained as above from compound 8 a ($307 \mathrm{mg}, 1.00 \mathrm{mmol}$) and N -methyl-C-phenyInitrone 9a ($135 \mathrm{mg}, 1.00 \mathrm{mmol}$). I somers 10a and 11a were separated by chromatography on a silica gel column. The first component gave compound 10a as a solid ($301 \mathrm{mg}, 68 \%$); $\mathrm{mp} 101-103^{\circ} \mathrm{C}$ (Found: C, 57.0; H, 5.8; N, 6.3. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~F}_{3}{ }^{-}$ $\mathrm{N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, 57.00; H,5.69; $\mathrm{N}, 6.33 \%$); $[a]_{\mathrm{D}}^{27} 76.8$ (c 2.1, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1155,1310$ and $1454 ; \delta_{\mathrm{H}} 1.09(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6.7), $1.72(6 \mathrm{H}, \mathrm{s}), 2.70(3 \mathrm{H}, \mathrm{s}), 4.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2), 4.47(1 \mathrm{H}, \mathrm{q}$, J 6.7), $4.56(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 7.4$ and 3.6$), 5.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.2$ and 3.6$)$ and 7.66-7.30 (9 H , m); $\delta_{\mathrm{c}} 11.0,40.2,43.1,56.9,72.8,75.0,76.4$ (q, J 34), 123.7 ($\mathrm{q}, \mathrm{J} 284$), 127.9, 129.1, 129.2 (2 C) $, 129.5,131.9$, 134.7, 136.1, 136.8 and 145.5; $\delta_{\mathrm{F}}-75.9$ (d, J 7); m / z (CI) 443 $\left(\mathrm{M}+\mathrm{H}^{+}\right)$. The second component gave compound 11a as a yellow solid ($53 \mathrm{mg}, 12 \%$); mp 102-105 ${ }^{\circ} \mathrm{C}$ (Found: C, 57.4 ; H , 5.7; $\mathrm{N}, 6.2 \%$); $[a]_{\mathrm{D}}^{27}-57.8$ (c 1.6, CHCl_{3}); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 1152, 1281 and 1456; $\delta_{\mathrm{H}} 1.17$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7$), 1.81 ($6 \mathrm{H}, \mathrm{s}$), 2.61 (3 H, s), 3.89 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7$), $4.46(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.7$), $5.09(1 \mathrm{H}, \mathrm{qd}, \mathrm{J}$ 7.4 and 3.8), $5.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.7$ and 3.8) and 8.19-6.97 (9 H , m); $\delta_{\mathrm{c}} 13.2,41.2,42.9,57.8,74.7$ (q, J 34), 75.1, 75.3, 124.1 (q, J 284), 127.7, 128.7, 128.8 (2 C), 129.1, 129.5, 132.4, 134.7, 135.0, 136.0 and 145.7; $\delta_{\mathrm{F}}-75.1(\mathrm{~d}, \mathrm{~J} 7) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 443\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
($3 \mathrm{~S}, 4 \mathrm{~S}, 5 \mathrm{R}$)-4-\{2-[(1S)-1-(D imethylamino)ethyl]phenyl-
sulfonyl\}-2,3-diphenyl-5-(trifluoromethyl)isoxazolidine 10b and (3R , 4R , 5S) -4- \{2[(1S)-1-(dimethylamino)ethyl]phenyl-
sulfonyl\}-2,3-diphenyl-5-(trifluoromethyl)isoxazolidine 11b. A mixture of isomers 10b and 11b was obtained as above from compound 8 a ($307 \mathrm{mg}, 1.00 \mathrm{mmol}$) and C , N -diphenylnitrone 9 b ($197 \mathrm{mg}, 1.00 \mathrm{mmol}$). I somers $\mathbf{1 0 b}$ and 11 b were separated by chromatography on a silica gel column. The first component gave compound 10b as an orange oil ($313 \mathrm{mg}, 62 \%$); $\mathrm{R}_{\mathrm{f}} 0.50$ (2:1 hexane-EtOA c) (Found: C, 61.79; H, 5.43; N, 5.59. $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 61.89 ; \mathrm{H}, 5.39 ; \mathrm{N}, 5.55 \%$); $[a]_{\mathrm{D}}^{24}$ 113.9 (c 1.8, CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1134,1240$ and 1580 ; $\delta_{\mathrm{H}} 1.11$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6$), $1.70(6 \mathrm{H}, \mathrm{s}), 4.56(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.6), 4.72$ ($1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 7.3$ and 3.5), $5.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.1), 5.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 7.1 and 3.5) and 8.15-7.02 ($14 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}} 10.6,40.0,56.9$, 69.8, 75.5, 76.3 (q, J 34), 119.4, 123.6 (q, J 284), 125.3, 128.0, 128.7, 129.0, 129.1, 129.4, 129.6, 132.1, 134.8, 136.0, 138.2, 145.6 and 148.1; $\delta_{\mathrm{F}}-75.9$ (d, J 7); m/z (CI) $505\left(\mathrm{M}+\mathrm{H}^{+}\right.$). The second component gave compound 11 b as a yellow solid (40 mg, 8\%); mp 95-98 ${ }^{\circ} \mathrm{C}$ (Found: C, 62.1; H, 5.4; N, 5.3%); $[a]_{0}^{23}-116.67$ (c $1.2, \mathrm{CHCl}_{3}$); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1150$, 1281 and $1580 ; \delta_{\mathrm{H}} 1.16(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7), 1.74(6 \mathrm{H}, \mathrm{s}), 4.57(1$ $\mathrm{H}, \mathrm{q}, \mathrm{J} 6.7$), 4.59 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9$), $5.33(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 7.2$ and
3.6), $5.47(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.9$ and 3.6$)$ and $8.23-6.92(14 \mathrm{H}, \mathrm{m})$; $\delta_{c} 11.9,40.7,57.4,72.9,74.5$ (q, J 34), 75.7, 119.5, 124.0 (q, J 284), 125.5, 127.8, 128.4, 128.9, 129.0, 129.0, 129.6, 132.9, 134.8, 136.0, 136.7, 146.0 and $148.1 ; \delta_{\mathrm{F}}-74.7$ (d, J 7); m / z (CI) $505\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
(3S,4S,5R)-2-B utyl-4-\{2-[(1S)-1-(dimethylamino)ethyl]-phenylsulfonyl\}-3-phenyl-5-(trifluoromethyl)isox azolidine 10c and (3R,4R,5S)-2-butyl-4-\{2-[(1S)-1-(dimethylamino)ethyl]-phenylsulfonyl\}-2-methyl-3-phenyl-5-(trifluoromethyl)isox azo-
lidine 11c. A mixture of isomers 10c and 11c was obtained as above from compound 8 a ($307 \mathrm{mg}, 1.00 \mathrm{mmol}$) and N -butyl-Cphenylnitrone 9 c ($177 \mathrm{mg}, 1.00 \mathrm{mmol}$). I somers 10c and 11c were separated by chromatography on a silica gel column. The first component gave compound 10c as a yellow oil (271 mg , 56%); R 0.38 ($2: 1$ hexane-EtOA c) (Found: C, 59.8; H, 6.4; N, 5.5. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\left.\mathrm{C}, 59.49 ; \mathrm{H}, 6.45 ; \mathrm{N}, 5.78 \%\right) ;[a]_{0}^{21}$ 114.0 ($\mathrm{c} \mathrm{1.7}, \mathrm{CHCl}_{3}$); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 1154,1279$ and 2959; δ_{H} $0.82(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2), 1.08(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7), 1.66-1.27(4 \mathrm{H}, \mathrm{m}), 1.71$ ($6 \mathrm{H}, \mathrm{s}$), 2.74 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.0$ and 7.6), 2.88-2.75 ($1 \mathrm{H}, \mathrm{m}$), 4.34 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9$), $4.45(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.7), 4.55(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 7.4$ and 3.4), $5.36\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.9\right.$ and 3.4) and $8.12-7.28(9 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 11.3$, 13.8, 20.1, 29.7, 40.2, 55.9, 57.0, 71.0, 74.8, 76.3 ($\mathrm{q}, \mathrm{J} 35$), 123.8 (q, J 285), 127.9, 129.0, 129.1, 129.1, 129.5, 131.9, 134.6, 136.2, 137.3 and 145.5; $\delta_{\mathrm{F}}-75.8(\mathrm{~d}, \mathrm{~J} 7) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 485\left(\mathrm{M}+\mathrm{H}^{+}\right)$. The second component gave isomer 11c as a yellow solid (73 mg , 15\%); mp $70-73^{\circ} \mathrm{C}$ (Found: C, 59.6; H, 6.3; N, 5.8\%); [a $]_{0}^{23}$ -78.33 ($\mathrm{c} 2.0, \mathrm{CHCl}_{3}$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1152,1281$ and 2957; δ_{H} 0.78 (3H,t, J 7.2), 1.15 (3H, d, J 6.6), 1.69-1.21 ($4 \mathrm{H}, \mathrm{m}$), 1.77 ($6 \mathrm{H}, \mathrm{s}$), 2.53 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 12.8$ and 7.7), 2.80-2.68 ($1 \mathrm{H}, \mathrm{m}$), 3.95 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7$), $4.44(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.6), 5.08$ ($1 \mathrm{H}, q d, J 7.4$ and 3.7), 5.16 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.7$ and 3.7) and $8.20-6.94(9 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 13.2$, 13.7, 20.1, 29.6, 41.1, 55.6, 57.8, 73.5, 74.5 (q, J 34), 74.9, 124.2 (q, J 285), 127.6, 128.7 (2 C), 128.8, 129.1, 129.4, 132.5, 135.7, 136.1 and 146.0; $\delta_{\mathrm{F}}-75.0$ (d, J 7); m/z (CI) 485 ($\mathrm{M}+\mathrm{H}^{+}$).

68:32 Diastereomeric mixture of (3S,4S,5R)-4-\{2-[(1S)-1-piperidinoethyl]phenylsulfonyl\}-2-methyl-3-phenyl-5-(tri-
fluoromethyl)isoxazolidine 12 and (3R,4R,5S)-4-\{2-[(1S)-1-piperidinoethyl]phenylsulfonyl\}-2-methyl-3-phenyl-5-(trifluoro-
methyl)isoxazolidine 13. This was obtained as above from compounds 8b ($347 \mathrm{mg}, 1.00 \mathrm{mmol}$) and 9a ($135 \mathrm{mg}, 1.00$ mmol) as a yellow oil ($357 \mathrm{mg}, 74 \%$); $\mathrm{R}_{\mathrm{f}} 0.39$ ($3: 1$ hexaneEtOAc) (Found: C, 59.9; H, 6.3; N, 5.5. $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, 59.74; H, 6.06; N, 5.81\%); $v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 1154$, 1279 and 2936; $\delta_{\mathrm{H}} 1.03$ (2.0 H, d, J 6.6), 1.16 (1.0 H, d, J 6.4), 1.22-1.50 ($6.0 \mathrm{H}, \mathrm{m}$), 1.90-2.33 (4.0 H, m), $2.62(1.0 \mathrm{H}, \mathrm{s}), 2.71$ $(2.0 \mathrm{H}, \mathrm{s}), 3.89(0.32 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.4), 3.97$ ($0.32 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9$), 4.08 ($0.68 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.6$), $4.25(0.68 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9), 4.46(0.32 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.9$ and 3.9), $4.68(0.68 \mathrm{H}, \mathrm{qd}, \mathrm{J} 7.6$ and 3.8$), 4.73(0.68 \mathrm{H}$, dd, J 7.9 and 3.8), 5.09 ($0.32 \mathrm{H}, \mathrm{qd}, \mathrm{J} 7.2$ and 3.9) and 7.02-8.07 (9.0 H , m); $\delta_{\mathrm{c}} 16.9,20.7,24.5$ (combined peak), 26.0 (combined peak), 42.9, 43.1, 50.8, 51.9, 58.6, 60.2, 73.0, 75.1, 74.5 ($q, J 34$), 75.2 (combined peak), 76.8 (q, J 34), 123.7 (q, J 284), 124.1 (q, J 285), 127.3, 127.6, 128.5, 128.8, 129.2 (combined peak), 129.2, 129.8, 130.2, 131.0, 131.5, 134.7, 134.9, 135.1, 135.1, 135.6, 135.9, 146.7 and 148.3; $\delta_{\mathrm{F}}-75.7$ (d, J 7, major), -75.3 (d, J 7, minor); m/z (CI) $483\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
70:30 Diastereomeric mixture of (3S,4S,5R)-4-(2-\{(1S)-1-[isopropyl(methyl)amino]ethyl\}phenylsulfonyl)-2-methyl-3-phenyl-5-(trifluoromethyl)isoxazolidine 14 and (3R,4R,5S)-4-(2-\{1S)-1-[isopropyl(methyl)amino]ethyl\}phenyIsulfonyl)-2-methyl-3-phenyl-5-(trifluoromethyl)isoxazolidine 15. This was obtained as above from compound $8 \mathrm{c}(336 \mathrm{mg}, 1.00 \mathrm{mmol})$ and 9a ($135 \mathrm{mg}, 1.00 \mathrm{mmol}$) as a yellow oil ($273 \mathrm{mg}, 58 \%$); $\mathrm{R}_{\mathrm{f}} 0.60$ (2:1 hexane-EtOAc) (Found: C, 59.0; H, 6.4; N, 5.8. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, 58.71; $\mathrm{H}, 6.21 ; \mathrm{N}, 5.95 \%$); $v_{\text {max }}{ }^{-}$ (neat)/cm ${ }^{-1} 1152,1281$ and $2971 ; \delta_{\mathrm{H}} 0.63(2.10 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5), 0.76$ ($0.90 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5$), 0.86 ($2.10 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5$), $0.76(0.90 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5)$, $0.97(2.10 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6), 1.14(0.90 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5), 1.66(0.90 \mathrm{H}, \mathrm{s})$, $2.46(0.30 \mathrm{H}$, septet, J 6.5$), 1.85(2.10 \mathrm{H}, \mathrm{s}), 2.63(0.90 \mathrm{H}, \mathrm{s})$, $2.68(2.10 \mathrm{H}, \mathrm{s}), 2.83(0.70 \mathrm{H}$, septet, J 6.5), $3.97(0.30 \mathrm{H}, \mathrm{d}, \mathrm{J}$
7.9), $4.13(0.70 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.6), 4.18(0.70 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1), 4.39(0.30 \mathrm{H}$ dd, J 7.9 and 3.8), $4.43(0.70 \mathrm{H}$, dd, J 8.1 and 3.6), $4.64(0.30 \mathrm{H}$, q, J 6.6), $4.74(0.70 \mathrm{H}, \mathrm{qd}, \mathrm{J} 7.2$ and 3.6$), 5.04(0.30 \mathrm{H}, \mathrm{qd}, \mathrm{J} 7.4$ and 3.8) and 7.05-8.07 (9.0 H , m); $\delta_{\mathrm{c}} 16.3,17.0,17.9,18.8,21.1$, $21.9,31.1,31.5,42.9,43.0,48.6,49.0,56.4,56.7,73.5,74.8$ (q, J 31), $75.0,75.3$ (combined peak), 75.9 ($q, J 34$), 123.7 ($q, J 285$), 124.0 (q, J 282), 127.3, 127.5, 128.6, 128.8, 128.9, 129.3 (combined peak), 129.3, 129.9, 130.1, 130.9, 131.4, 134.5, 134.9, 135.0, 135.3, 135.3, 135.5, 149.3 and 149.7; $\delta_{\mathrm{F}}-75.7$ (d, J 7 , major), -75.4 (d, J 7, minor); m/z (CI) $471\left(\mathrm{M}+\mathrm{H}^{+}\right.$).

$X-R$ ay structure determination of compound 10a

A crystal of compound 10a was grown from diethyl ether solution.

Crystal data. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}=442.50$. M onoclinic, $a=$ $9.028(2), \quad \mathrm{b}=9.801(1), \mathrm{c}=12.574(2) \quad \AA, \quad \beta=97.55(1)^{\circ}, \quad \mathrm{V}=$ 1102.9(3) \AA^{3} [from refinement against centring angles of 25 reflections with $\left.18.7 \leq \theta \leq 20.5^{\circ}, \lambda=0.71073 \AA, \mathrm{~T}=296 \mathrm{~K}\right]$, space group $\mathrm{P} 2_{1}(\mathrm{~N} .4), \mathrm{Z}=2, \mathrm{D}_{\mathrm{x}}=1.332 \mathrm{~g} \mathrm{~cm}^{-3}$, tablet $0.5 \times 0.5 \times 0.5 \mathrm{~mm}, \mu(\mathrm{M} \mathrm{o}-\mathrm{K} \alpha)=0.187 \mathrm{~mm}^{-1}$.

Data collection and processing. Rigaku AFC5R four-circle diffractometer, $\omega / 2 \theta$ scans, graphite-monochromated $\mathrm{Mo-K} \alpha$ X-radiation; 2857 reflections measured ($2 \theta_{\text {max }}=55^{\circ},+h,+k$, $\pm \mathrm{I}$), 2694 unique [merging $\mathrm{R}=0.014$], giving 1965 with $\mathrm{F} \geq 6 \sigma(\mathrm{~F})$ which were retained in all calculations. No crystal decay was observed and no corrections were applied for absorption.

Structure solution and refinement. A utomatic direct methods (all non-H -atoms). Full-matrix least-squares refinement (on F) with all non-H-atoms anisotropic; hydrogen atoms were included at geometrically calculated positions but were not refined. The weighting scheme $w^{-1}=4 \mathrm{~F}_{0} / \sigma^{2}\left(F_{0}{ }^{2}\right)$ gave satisfactory agreement analyses. Final $R, w R=0.036,0.042$ respectively, $S=1.56$ for 270 refined parameters and the final ΔF synthesis showed no peaks outside the range -0.22 to 0.16 e \AA^{-3}. All calculations were performed using the TEX SA N ${ }^{\text {TM }}$ crystallographic software package. \mathbf{q}^{11}

II A tomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, Journal, 1997, I ssue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 207/97.

Acknowledgements

This work was financially supported in part by the Ishida Foundation and a Grant-in-Aid for Scientific Research from the M inistry of Education, Science and Culture, J apan.

R eferences

1 For a review on fluorine-containing heterocyclic compounds, see: K. Tanaka, J. Synth. Org. Chem. J pn., 1980, 48, 16 and references cited therein; for biomedical aspects, see: J. T. Welch and S. Eswarakrishnan, Fluorine in Bioorganic Chemistry, Wiley, N ew York, 1991; for a review of fluorinated heterocycles, see: E. Differding, W. Frick, R. W. Lang, P. M artin, C. Schmit, S. Veensta and H. Greuter, Bull. Soc. Chim. B elg., 1990, 99, 647.

2 (a) P. Bravo, L. Bruche, G. Fronza and G. Zecchi, Tetrahedron, 1992, 48, 9775; (b) K. Tanaka, T. M ori and K. M itsuhashi, C hem. Lett., 1989, 1115; (c) P. Bravo, L. Bruche, M. Crucianelli, A. Farina, S. V. M eille, A. M erli and P. Seresini, J. Chem. Res. (S), 1996, 348; (d) K. Tanaka and K. M itsuhashi, J. Synth. Org. C hem. J pn., 1987, 45, 269.
3 H. Tsuge, T. Okano and S. Eguchi, J. Chem. Soc., Perkin Trans. 1, 1995, 2761.
4 T. D. H arris and G. P. Roth, J. O rg. C hem., 1979, 44, 2004.
5 S. H. Pine and B. L. Sanchez, J. Org. Chem., 1971, 36, 829.
6 E. Juaristi, P. M urer and D. Seebach, Synthesis, 1993, 1243.
7 B. M. Trost and D. P. Curran, Tetrahedron Lett., 1981, 22, 1287.
8 M. J. S. Dewar, E. G. Zeobisch, E. F. Healy and J. J. P. Stewart, J. A m. Chem. Soc., 1985, 107, 3902.

9 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley, New York, 1984, ch. 1.
10 A. Campbell, A. H. J. H ouson and J. K enyon, J. C hem. Soc., 1947, 93.

11 TEXSAN ${ }^{\text {TM }}$. M olecular Structure Corporation, 3200 Research Forest D rive, The Woodlands, TX 77381-4238, U SA, 1985-1989.

Paper 6/06890A
R eceived 8th O ctober 1996
A ccepted 17th J anuary 1997

[^0]: \dagger Although chemical shifts of $\mathrm{H}-3, \mathrm{H}-4$ and $\mathrm{H}-5$ on the isoxazolidine ring in compounds $10 \mathrm{a}-\mathrm{c}, \mathbf{1 1 a - c}$ and $\mathbf{1 2 - 1 5}$ varied because of the variety of substituents on the isoxazolidine, each relationship between the same kind of protons of both major and minor adducts is similar. The resonances of H-3 of the major adducts (10a-c, 12 and 14) appear $0.13-0.39 \mathrm{ppm}$ to lower field than those of the minor ones (11a-c, 13 and 15). The resonances of $\mathrm{H}-4$ of the major adducts appear $0.04-0.27$ ppm to lower field than those of the minor ones. The resonances of H-5 of the major adducts appear $0.30-1.07 \mathrm{ppm}$ to higher field than those of the minor ones.

[^1]: \ddagger Semi-empirical calculations were carried out using M OPAC version 94.10 packaged in the CAChe ${ }^{\circledR}$ Version 3.7.
 § $1 \mathrm{cal}=4.184 \mathrm{~J}$.

